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Perfect set property

Problem

Does hold true PSP in the theory ZF + wAC + LM + BP?

LM

BP

¬BS

wCH

¬ACPSP

wAC

AD

wAC: Weak Axiom of Choice

BS: there exists a Bernstein set

AC: Axiom of Choice
AD: Axiom of Determinacy

LM: every set of R is Lebesgue measurable
BP: every set of R possesss the Baire property
wCH: there is no set X such that ℵ0 < |X| < c

PSP: every uncount. set of R contains a perfect set
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Perfect set property

Useful notions:

The Weak Axiom of Choice wAC says that for any
countable family of non-empty subsets of a given set
of power 2ℵ0 there exists a choice function.

A subset A is called a Marczewski null set or (S)0-set if
every perfect set P ⊆ X has a perfect subset Q which
misses A. In ZF + wAC we can verify that the class of all
(S)0-sets is a σ-ideal.

A subset of a perfect Polish space X is called a totally
imperfect if it contains no perfect subset.

[R]≤ℵ0 ⊆ S0 ⊆ T I

A set B ⊆ X is called a Bernstein set if |B| = |X \ B| = c

and neither B nor X \ B contains a perfect subset.
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Perfect set property

Theorem 1

If there is no Bernstein set then S0 = T I.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no
Bernstein set on the Cantor space ω2.

Proof of Lemma 2:
Take the mapping ϕ : ω2 → [0, 1] given by ϕ(v) = Σn2−n+1v(n).

ϕ is continuous,

ϕ(v) ∈ Q ∩ [0, 1] if and only if v is an eventually periodic
sequence in ω2.

If X ⊆ ω2 is a Bernstein set, then ϕ[X ] ⊆ [0, 1] is Bernstein set.
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Perfect set property

Proof of Theorem 1:
Let X ⊆ R be an uncountable totally imperfect set and P being
any perfect subset of R.

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such
that X ∩ Q = ∅

In the next, we shall assume that X ∩ P is uncountable set.

fix an enumeration of basic open sets and take maximal
open set U such that X ∩ P ∩ U is countable,

X0 = (X ∩ P) \ U is uncountable set without isolated points
and therefore the set Q = X0 ⊆ P \ U is perfect,

X0 is totally imperfect set that is not Bernstein set in Q,
there exists a perfect subset Q∗ ⊆ Q such that Q∗ ∩X0 = ∅,

Q∗ ⊆ Q ⊆ P \ U ⊆ P and Q∗ ∩ X = ∅,

thus, X is (S)0-set.
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Perfect set property

Remark in ZF+DC (A. B. Kharazishvili [6])

If there exists a totally imperfect set of reals of cardinality c,
then there exists a Lebesgue non-measurable set of reals.

- this statement one can prove in the theory ZF+wAC and Luzin
Theorem is essentially exploited for its proof

Theorem 3 in ZF+wAC (N. N. Luzin, see e.g. [5])

Let X, Y be Polish spaces, μ being a Borel measure on X.
A function f : X → Y is μ-measurable if and only if for any
positive ε there exists a μ-measurable set A ⊆ X such that
μ(A) < ε and f |(X \ A) is continuous.
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Perfect set property

Theorem 4

In the theory ZF + wAC + LM any totally imperfect set of reals
has cardinality strictly smaller than c.

Proof of Theorem 4:
Let X ⊆ R be a totally imperfect set of cardinality c and let
f : R → X be a bijection.

Supposing that f is Lebesgue measurable, there exists
a measurable set A ⊆ R with strictly positive measure such
that the restriction f |A is continuous.
The Lebesgue measure is Radon, i.e.

λ∗(A) = sup{λ∗(K ) : K ⊆ A, K compact}

there exists a compact set K in R with positive measure.
K is uncountable and f |K is a homeomorphism.
f (K ) being a subset of X contains a non-empty perfect set,
which contradicts the assumption of X .
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Perfect set property

Corollary 5

In the theory ZF + wAC + LM the following assertions are
equivalent:

a) wCH holds true.

b) Any (S)0-set of reals is countable.

c) PSP holds true.

An analogue of the Corollary 5 holds true for the Baire Property:

Theorem 6 in ZF+wAC (R. Baire, see e.g. [1])

Assume that X , Y are metric separable spaces. A function
f : X −→ Y is Baire measurable if and only if there exists
a meager set D ⊆ X such that f |(X \ D) is continuous.
Especially, for any Borel measurable, i.e. for analytically
representable function f there exists a meager set D ⊆ X
such that f |(X \ D) is continuous.
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Assume that X , Y are metric separable spaces. A function
f : X −→ Y is Baire measurable if and only if there exists
a meager set D ⊆ X such that f |(X \ D) is continuous.
Especially, for any Borel measurable, i.e. for analytically
representable function f there exists a meager set D ⊆ X
such that f |(X \ D) is continuous.
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In the theory ZF + wAC + BP the following assertions are
equivalent:

a) wCH holds true.

b) Any (S)0-set of reals is countable.
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Let us remark that by Shelah model [8] of ZF + DC we already
know that BP � wCH. The overall question still remains open:

Problem

Does hold true wCH in the theory ZF + wAC + LM + BP?
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An existence of uncountable (S)0-sets
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the notions as λ′-sets, σ-sets, Sierpiński and Luzin sets
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Borel Conjecture and Generalized Borel Conjecture

Borel Conjecture [1919]

Every set of reals of strong measure zero is countable, i.e.
SN = [R]<ℵ1 .

the Borel Conjecture is neither provable nor refutable
in ZFC, mainly by a construction of a model of ZFC
by R. Laver [7],

P. Corazza [3] showed that the Generalized Borel
Conjecture, saying SN = [R]<c, is also independent
of ZFC,

By Theorems 1 and 4 we have that T I = S0 = [R]<c

in the theory ZF+wAC+LM+BP.
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Corollary 8

In the theory ZF + wAC + LM + BP the following assertions are
equivalent:

a) wCH holds true.

b) Any (S)0-set of reals is countable.

c) PSP holds true.

d) the Borel Conjecture and the Generalized Borel Conjecture
hold true.
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The Cichoń Diagram - T. Barto., H. Judah and S. Shelah [2]
- described the relationship between the following sentences
in the Cichoń Diagram

A(m) ≡ unions of fewer than 2ℵ0 null sets is null,

B(m) ≡ R is not the union of fewer than 2ℵ0 null sets,

C(m) ≡ ideal of null sets has no basis of size less than 2ℵ0 ,

U(m) ≡ every subset of R of size less than 2ℵ0 is null.

- replacing word “null” by the word “meager” we obtain
A(c), B(c), C(c) and U(c), respectively.
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in the Cichoń Diagram

A(m) ≡ unions of fewer than 2ℵ0 null sets is null,

B(m) ≡ R is not the union of fewer than 2ℵ0 null sets,

C(m) ≡ ideal of null sets has no basis of size less than 2ℵ0 ,

U(m) ≡ every subset of R of size less than 2ℵ0 is null.

- replacing word “null” by the word “meager” we obtain
A(c), B(c), C(c) and U(c), respectively.

B(m) U(c) C(c) C(m)

A(m) A(c) B(c) U(m)

Diagram 7
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Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set A ⊆ R has strong measure zero if and only if for every
meager set F ⊆ R we have A + F 
= R.

Theorem 10

In the theory ZF + wAC + LM + BP hold true

wCH → A(m), B(c) → SN = [R]<c.

Proof of Theorem 10:
If ¬A(m) then there exists a family F ⊆ N of cardinality
fewer than c such that

⋃
F /∈ N . By wAC N is a σ-ideal,

thus the family F cannot be countable. ¬A(m) → ¬wCH.
Assume that B(c) holds true and let A be any set of [R]<c.
Let F be any meager set of reals. Then by B(c) the family
{x + F : x ∈ A} cannot be a cover of R, and therefore
A + F 
= R. Thus, A ∈ SN .
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