Perfect set property

Michal Staš

Department of Mathematics and Theoretical Informatics
Faculty of Electrical Engineering and Informatics, TU in Košice
3. februar 2011

Hejnice

Problem

Does hold true PSP in the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$?

wAC: Weak Axiom of Choice
AC: Axiom of Choice
AD: Axiom of Determinacy
BS: there exists a Bernstein set

PSP: every uncount. set of R contains a perfect set $\mathbf{L M}$: every set of R is Lebesgue measurable BP: every set of R possesss the Baire property $\mathbf{w C H}$: there is no set X such that $\aleph_{0}<|X|<c$

Problem

Does hold true PSP in the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$?

wAC: Weak Axiom of Choice
AC: Axiom of Choice
AD: Axiom of Determinacy
BS: there exists a Bernstein set

PSP: every uncount. set of R contains a perfect set $\mathbf{L M}$: every set of R is Lebesgue measurable BP: every set of R possesss the Baire property wCH: there is no set X such that $\aleph_{0}<|X|<c$

Useful notions:
> countable family of non-empty subsets of a given set of power $2 \aleph^{\aleph_{0}}$ there exists a choice function.

> A subset A is called a Marczewski null set or $(S)_{0-\text { set if }}$ every perfect set $P \subseteq X$ has a perfect subset Q which misses A.

Useful notions:

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power $2^{\aleph_{0}}$ there exists a choice function.

Useful notions:

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power $2{ }^{\aleph_{0}}$ there exists a choice function.
- A subset A is called a Marczewski null set or $(S)_{0}$-set if every perfect set $P \subseteq X$ has a perfect subset Q which misses A.
- A subset of a perfect Polish space X is called a totally
imperfect if it contains no perfect subset

Useful notions:

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power $2^{\aleph_{0}}$ there exists a choice function.
- A subset A is called a Marczewski null set or $(S)_{0}$-set if every perfect set $P \subseteq X$ has a perfect subset Q which misses A. In $\mathbf{Z F}+\mathbf{w A C}$ we can verify that the class of all $(S)_{0}$-sets is a σ-ideal.
imperfect if it contains no perfect subset

Useful notions:

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power $2^{\aleph_{0}}$ there exists a choice function.
- A subset A is called a Marczewski null set or $(S)_{0}$-set if every perfect set $P \subseteq X$ has a perfect subset Q which misses A. In $\mathbf{Z F}+\mathbf{w A C}$ we can verify that the class of all $(S)_{0}$-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

Useful notions:

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power $2^{\aleph_{0}}$ there exists a choice function.
- A subset A is called a Marczewski null set or $(S)_{0}$-set if every perfect set $P \subseteq X$ has a perfect subset Q which misses A. In $\mathbf{Z F}+\mathbf{w A C}$ we can verify that the class of all $(S)_{0}$-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

$$
[\mathbb{R}]^{\leq \aleph_{0}} \subseteq \mathcal{S}_{0} \subseteq \mathcal{T} \mathcal{I}
$$

Useful notions:

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power $2{ }^{\aleph_{0}}$ there exists a choice function.
- A subset A is called a Marczewski null set or $(S)_{0}$-set if every perfect set $P \subseteq X$ has a perfect subset Q which misses A. In $\mathbf{Z F}+\mathbf{w A C}$ we can verify that the class of all $(S)_{0}$-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

$$
[\mathbb{R}]^{\leq \aleph_{0}} \subseteq \mathcal{S}_{0} \subseteq \mathcal{T} \mathcal{I}
$$

- A set $B \subseteq X$ is called a Bernstein set if $|B|=|X \backslash B|=\mathfrak{c}$ and neither B nor $X \backslash B$ contains a perfect subset.

Theorem 1

If there is no Bernstein set then $\mathcal{S}_{0}=\mathcal{T} \mathcal{I}$.

Theorem 1

If there is no Bernstein set then $\mathcal{S}_{0}=\mathcal{T} \mathcal{I}$.

- we shall need an auxiliary result
\square
Lemma 2
If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${ }^{\omega} 2$

Proof of Lemma 2:

Theorem 1

If there is no Bernstein set then $\mathcal{S}_{0}=\mathcal{T} \mathcal{I}$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${ }^{\omega} 2$.

Theorem 1

If there is no Bernstein set then $\mathcal{S}_{0}=\mathcal{T} \mathcal{I}$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${ }^{\omega} 2$.

Proof of Lemma 2:

Theorem 1

If there is no Bernstein set then $\mathcal{S}_{0}=\mathcal{T} \mathcal{I}$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${ }^{\omega} 2$.

Proof of Lemma 2:

Take the mapping $\varphi:{ }^{\omega} 2 \rightarrow[0,1]$ given by $\varphi(v)=\Sigma_{n} 2^{-n+1} v(n)$.

Theorem 1

If there is no Bernstein set then $\mathcal{S}_{0}=\mathcal{T} \mathcal{I}$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${ }^{\omega} 2$.

Proof of Lemma 2:

Take the mapping $\varphi:{ }^{\omega} 2 \rightarrow[0,1]$ given by $\varphi(v)=\Sigma_{n} 2^{-n+1} v(n)$.

- φ is continuous,

Theorem 1

If there is no Bernstein set then $\mathcal{S}_{0}=\mathcal{T} \mathcal{I}$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${ }^{\omega} 2$.

Proof of Lemma 2:

Take the mapping $\varphi:{ }^{\omega} 2 \rightarrow[0,1]$ given by $\varphi(v)=\Sigma_{n} 2^{-n+1} v(n)$.

- φ is continuous,
- $\varphi(v) \in \mathbb{Q} \cap[0,1]$ if and only if v is an eventually periodic sequence in ${ }^{\omega} 2$.

Theorem 1

If there is no Bernstein set then $\mathcal{S}_{0}=\mathcal{T} \mathcal{I}$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${ }^{\omega} 2$.

Proof of Lemma 2:

Take the mapping $\varphi:{ }^{\omega} 2 \rightarrow[0,1]$ given by $\varphi(v)=\Sigma_{n} 2^{-n+1} v(n)$.

- φ is continuous,
- $\varphi(v) \in \mathbb{Q} \cap[0,1]$ if and only if v is an eventually periodic sequence in ${ }^{\omega} 2$.
If $X \subseteq{ }^{\omega} 2$ is a Bernstein set, then $\varphi[X] \subseteq[0,1]$ is Bernstein set.

Proof of Theorem 1:

Proof of Theorem 1:

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and P being any perfect subset of \mathbb{R}.

Proof of Theorem 1:

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and P being any perfect subset of \mathbb{R}.

- if $|X \cap P| \leq \omega$, then there exists a perfect set $Q \subseteq P$ such that $X \cap Q=\emptyset$

In the next, we shall assume that $X \cap P$ is uncountable set.
fix an enumeration of basic open sets and take maximal onen set $/ /$ such that $X \cap P \cap \|$ is countahle

Proof of Theorem 1:

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and P being any perfect subset of \mathbb{R}.

- if $|X \cap P| \leq \omega$, then there exists a perfect set $Q \subseteq P$ such that $X \cap Q=\emptyset$

In the next, we shall assume that $X \cap P$ is uncountable set.

Proof of Theorem 1:

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and P being any perfect subset of \mathbb{R}.

- if $|X \cap P| \leq \omega$, then there exists a perfect set $Q \subseteq P$ such that $X \cap Q=\emptyset$
In the next, we shall assume that $X \cap P$ is uncountable set.
- fix an enumeration of basic open sets and take maximal open set U such that $X \cap P \cap U$ is countable,
- X_{0} is tatally imnorfont sot that is not Bernstein set in Q there exists a perfect subset $Q^{*} \subseteq Q$ such that Q

Proof of Theorem 1:

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and P being any perfect subset of \mathbb{R}.

- if $|X \cap P| \leq \omega$, then there exists a perfect set $Q \subseteq P$ such that $X \cap Q=\emptyset$

In the next, we shall assume that $X \cap P$ is uncountable set.

- fix an enumeration of basic open sets and take maximal open set U such that $X \cap P \cap U$ is countable,
- $X_{0}=(X \cap P) \backslash U$ is uncountable set without isolated points and therefore the set $Q=\overline{X_{0}} \subseteq P \backslash U$ is perfect,

Proof of Theorem 1:

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and P being any perfect subset of \mathbb{R}.

- if $|X \cap P| \leq \omega$, then there exists a perfect set $Q \subseteq P$ such that $X \cap Q=\emptyset$
In the next, we shall assume that $X \cap P$ is uncountable set.
- fix an enumeration of basic open sets and take maximal open set U such that $X \cap P \cap U$ is countable,
- $X_{0}=(X \cap P) \backslash U$ is uncountable set without isolated points and therefore the set $Q=\overline{X_{0}} \subseteq P \backslash U$ is perfect,
- X_{0} is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset $Q^{*} \subseteq Q$ such that $Q^{*} \cap X_{0}=\emptyset$,

Proof of Theorem 1:

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and P being any perfect subset of \mathbb{R}.

- if $|X \cap P| \leq \omega$, then there exists a perfect set $Q \subseteq P$ such that $X \cap Q=\emptyset$
In the next, we shall assume that $X \cap P$ is uncountable set.
- fix an enumeration of basic open sets and take maximal open set U such that $X \cap P \cap U$ is countable,
- $X_{0}=(X \cap P) \backslash U$ is uncountable set without isolated points and therefore the set $Q=\overline{X_{0}} \subseteq P \backslash U$ is perfect,
- X_{0} is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset $Q^{*} \subseteq Q$ such that $Q^{*} \cap X_{0}=\emptyset$,
- $Q^{*} \subseteq Q \subseteq P \backslash U \subseteq P$ and $Q^{*} \cap X=\emptyset$,

Proof of Theorem 1:

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and P being any perfect subset of \mathbb{R}.

- if $|X \cap P| \leq \omega$, then there exists a perfect set $Q \subseteq P$ such that $X \cap Q=\emptyset$
In the next, we shall assume that $X \cap P$ is uncountable set.
- fix an enumeration of basic open sets and take maximal open set U such that $X \cap P \cap U$ is countable,
- $X_{0}=(X \cap P) \backslash U$ is uncountable set without isolated points and therefore the set $Q=\overline{X_{0}} \subseteq P \backslash U$ is perfect,
- X_{0} is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset $Q^{*} \subseteq Q$ such that $Q^{*} \cap X_{0}=\emptyset$,
- $Q^{*} \subseteq Q \subseteq P \backslash U \subseteq P$ and $Q^{*} \cap X=\emptyset$,
- thus, X is $(S)_{0}$-set.

Diagram 2

Remark in ZF+DC (A. B. Kharazishvili [6])

If there exists a totally imperfect set of reals of cardinality \mathfrak{c}, then there exists a Lebesgue non-measurable set of reals.

Remark in ZF+DC (A. B. Kharazishvili [6])

If there exists a totally imperfect set of reals of cardinality \mathfrak{c}, then there exists a Lebesgue non-measurable set of reals.

- this statement one can prove in the theory ZF+wAC and Luzin

Theorem is essentially exploited for its proof

Remark in ZF+DC (A. B. Kharazishvili [6])

If there exists a totally imperfect set of reals of cardinality \mathfrak{c}, then there exists a Lebesgue non-measurable set of reals.

- this statement one can prove in the theory ZF+wAC and Luzin

Theorem is essentially exploited for its proof

Theorem 3 in ZF+wAC (N. N. Luzin, see e.g. [5])

Let X, Y be Polish spaces, μ being a Borel measure on X . A function $f: X \rightarrow Y$ is μ-measurable if and only if for any positive ε there exists a μ-measurable set $A \subseteq X$ such that $\mu(A)<\varepsilon$ and $f \mid(X \backslash A)$ is continuous.

Theorem 4

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ any totally imperfect set of reals has cardinality strictly smaller than c.

Theorem 4

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c}

Theorem 4

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f: \mathbb{R} \rightarrow X$ be a bijection.

that the restriction $f \mid A$ is continuous

Theorem 4

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f: \mathbb{R} \rightarrow X$ be a bijection.

- Supposing that f is Lebesgue measurable,
there exists a compact set K in \mathbb{R} with positive measure.

Theorem 4

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f: \mathbb{R} \rightarrow X$ be a bijection.

- Supposing that f is Lebesgue measurable, there exists a measurable set $A \subseteq \mathbb{R}$ with strictly positive measure such that the restriction $f \mid A$ is continuous.

Theorem 4

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ any totally imperfect set of reals has cardinality strictly smaller than c .

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f: \mathbb{R} \rightarrow X$ be a bijection.

- Supposing that f is Lebesgue measurable, there exists a measurable set $A \subseteq \mathbb{R}$ with strictly positive measure such that the restriction $f \mid A$ is continuous.
- The Lebesgue measure is Radon, i.e.

$$
\lambda^{*}(A)=\sup \left\{\lambda^{*}(K): K \subseteq A, K \text { compact }\right\}
$$

there exists a compact set K in \mathbb{R} with positive measure.

Theorem 4

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f: \mathbb{R} \rightarrow X$ be a bijection.

- Supposing that f is Lebesgue measurable, there exists a measurable set $A \subseteq \mathbb{R}$ with strictly positive measure such that the restriction $f \mid A$ is continuous.
- The Lebesgue measure is Radon, i.e.

$$
\lambda^{*}(A)=\sup \left\{\lambda^{*}(K): K \subseteq A, K \text { compact }\right\}
$$

there exists a compact set K in \mathbb{R} with positive measure.

- K is uncountable and $f \mid K$ is a homeomorphism.

Theorem 4

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f: \mathbb{R} \rightarrow X$ be a bijection.

- Supposing that f is Lebesgue measurable, there exists a measurable set $A \subseteq \mathbb{R}$ with strictly positive measure such that the restriction $f \mid A$ is continuous.
- The Lebesgue measure is Radon, i.e.

$$
\lambda^{*}(A)=\sup \left\{\lambda^{*}(K): K \subseteq A, K \text { compact }\right\}
$$

there exists a compact set K in \mathbb{R} with positive measure.

- K is uncountable and $f \mid K$ is a homeomorphism.
- $f(K)$ being a subset of X contains a non-empty perfect set, which contradicts the assumption of X.

Corollary 5

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ the following assertions are equivalent:
a) $\mathbf{w C H}$ holds true.
b) Any $(\mathcal{S})_{0}$-set of reals is countable.
c) PSP holds true.

Corollary 5

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ the following assertions are equivalent:
a) $\mathbf{w C H}$ holds true.
b) Any $(\mathcal{S})_{0}$-set of reals is countable.
c) PSP holds true.

An analogue of the Corollary 5 holds true for the Baire Property:

Corollary 5

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}$ the following assertions are equivalent:
a) $\mathbf{w C H}$ holds true.
b) Any $(\mathcal{S})_{0}$-set of reals is countable.
c) PSP holds true.

An analogue of the Corollary 5 holds true for the Baire Property:

Theorem 6 in ZF+wAC (R. Baire, see e.g. [1])

Assume that X, Y are metric separable spaces. A function $f: X \longrightarrow Y$ is Baire measurable if and only if there exists a meager set $D \subseteq X$ such that $f \mid(X \backslash D)$ is continuous. Especially, for any Borel measurable, i.e. for analytically representable function f there exists a meager set $D \subseteq X$ such that $f \mid(X \backslash D)$ is continuous.

Corollary 7

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$ the following assertions are equivalent:
a) $\mathbf{w C H}$ holds true.
b) Any $(\mathcal{S})_{0}$-set of reals is countable.
c) PSP holds true.

$$
\begin{aligned}
& \text { Let us remark that by Shelah model [8] of } \mathbf{Z F}+\mathbf{D C} \text { we already } \\
& \text { know that } \mathbf{B P} \leftrightarrows \mathbf{w C H} \text {. The overall question still remains open: }
\end{aligned}
$$

Corollary 7

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$ the following assertions are equivalent:
a) $\mathbf{w C H}$ holds true.
b) Any $(\mathcal{S})_{0}$-set of reals is countable.
c) PSP holds true.

Let us remark that by Shelah model [8] of ZF + DC we already know that $\mathbf{B P} \rightarrow \mathbf{w C H}$.

Corollary 7

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$ the following assertions are equivalent:
a) $\mathbf{w C H}$ holds true.
b) Any $(\mathcal{S})_{0}$-set of reals is countable.
c) PSP holds true.

Let us remark that by Shelah model [8] of ZF + DC we already know that $\mathbf{B P} \leftrightarrows \mathbf{w C H}$. The overall question still remains open:

Corollary 7

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{B P}$ the following assertions are equivalent:
a) $\mathbf{w C H}$ holds true.
b) Any $(\mathcal{S})_{0}$-set of reals is countable.
c) PSP holds true.

Let us remark that by Shelah model [8] of ZF + DC we already know that $\mathbf{B P} \leftrightarrows \mathbf{w C H}$. The overall question still remains open:

Problem

Does hold true wCH in the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$?

An existence of uncountable $(\mathcal{S})_{0}$-sets

An existence of uncountable $(\mathcal{S})_{0}$-sets

- related to the small sets is often connected with the notions as λ^{\prime}-sets, σ-sets, Sierpiński and Luzin sets

An existence of uncountable $(\mathcal{S})_{0}$-sets

- related to the small sets is often connected with the notions as λ^{\prime}-sets, σ-sets, Sierpiński and Luzin sets

Diagram 3

In the theory $Z F+w A C+L M+B P$:

Diagram 4

In the theory $Z F+w A C+L M+B P$:

Diagram 5

Borel Conjecture and Generalized Borel Conjecture

Borel Conjecture and Generalized Borel Conjecture

Borel Conjecture [1919]

Every set of reals of strong measure zero is countable, i.e. $\mathcal{S N}=[\mathbb{R}]^{<\aleph_{1}}$.

Borel Conjecture and Generalized Borel Conjecture

Borel Conjecture [1919]

Every set of reals of strong measure zero is countable, i.e. $\mathcal{S N}=[\mathbb{R}]^{<\aleph_{1}}$.

- the Borel Conjecture is neither provable nor refutable in ZFC, mainly by a construction of a model of ZFC by R. Laver [7],

Borel Conjecture and Generalized Borel Conjecture

Borel Conjecture [1919]

Every set of reals of strong measure zero is countable, i.e. $\mathcal{S N}=[\mathbb{R}]^{<\aleph_{1}}$.

- the Borel Conjecture is neither provable nor refutable in ZFC, mainly by a construction of a model of ZFC by R. Laver [7],
- P. Corazza [3] showed that the Generalized Borel Conjecture, saying $\mathcal{S N}=[\mathbb{R}]^{<\mathfrak{c}}$, is also independent of ZFC,

Borel Conjecture and Generalized Borel Conjecture

Borel Conjecture [1919]

Every set of reals of strong measure zero is countable, i.e. $\mathcal{S N}=[\mathbb{R}]^{<\aleph_{1}}$.

- the Borel Conjecture is neither provable nor refutable in ZFC, mainly by a construction of a model of ZFC by R. Laver [7],
- P. Corazza [3] showed that the Generalized Borel Conjecture, saying $\mathcal{S N}=[\mathbb{R}]^{<\mathfrak{c}}$, is also independent of ZFC,
- By Theorems 1 and 4 we have that $\mathcal{T} \mathcal{I}=\mathcal{S}_{0}=[\mathbb{R}]^{<c}$ in the theory $\mathbf{Z F}+\mathbf{w A C}+L M+B P$.

Corollary 8

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ the following assertions are equivalent:
a) wCH holds true.
b) Any $(\mathcal{S})_{0}$-set of reals is countable.
c) PSP holds true.
d) the Borel Conjecture and the Generalized Borel Conjecture hold true.

The Cichoń Diagram - T. Barto., H. Judah and S. Shelah [2]

The Cichoń Diagram - T. Barto., H. Judah and S. Shelah [2]

- described the relationship between the following sentences in the Cichoń Diagram
- $A(m) \equiv$ unions of fewer than $2^{\aleph_{0}}$ null sets is null,
- $B(m) \equiv \mathbb{R}$ is not the union of fewer than $2^{\aleph_{0}}$ null sets,
- $C(m) \equiv$ ideal of null sets has no basis of size less than $2^{\aleph_{0}}$,
- $U(m) \equiv$ every subset of \mathbb{R} of size less than $2^{\aleph_{0}}$ is null.
- replacing word "null" by the word "meager" we obtain $A(c), B(c), C(c)$ and $U(c)$, respectively.

The Cichoń Diagram - T. Barto., H. Judah and S. Shelah [2]

- described the relationship between the following sentences in the Cichoń Diagram
- $A(m) \equiv$ unions of fewer than $2^{\aleph_{0}}$ null sets is null,
- $B(m) \equiv \mathbb{R}$ is not the union of fewer than $2^{\aleph_{0}}$ null sets,
- $C(m) \equiv$ ideal of null sets has no basis of size less than $2^{\aleph_{0}}$,
- $U(m) \equiv$ every subset of \mathbb{R} of size less than $2^{\aleph_{0}}$ is null.
- replacing word "null" by the word "meager" we obtain $A(c), B(c), C(c)$ and $U(c)$, respectively.

Diagram 7

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Proof of Theorem 10:

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ hold true

$$
\mathbf{w C H} \rightarrow A(m), \quad B(c) \rightarrow \mathcal{S N}=[\mathbb{R}]^{<c} .
$$

Proof of Theorem 10:

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ hold true

$$
\mathbf{w C H} \rightarrow A(m), \quad B(c) \rightarrow \mathcal{S N}=[\mathbb{R}]^{<c} .
$$

Proof of Theorem 10:

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ hold true

$$
\mathbf{w C H} \rightarrow A(m), \quad B(c) \rightarrow \mathcal{S N}=[\mathbb{R}]^{<\mathrm{c}} .
$$

Proof of Theorem 10:

- If $\neg A(m)$ then there exists a family $\mathcal{F} \subseteq \mathcal{N}$ of cardinality fewer than \mathfrak{c} such that $\bigcup \mathcal{F} \notin \mathcal{N}$.

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ hold true

$$
\mathbf{w C H} \rightarrow A(m), \quad B(c) \rightarrow \mathcal{S N}=[\mathbb{R}]^{<\mathbf{c}} .
$$

Proof of Theorem 10:

- If $\neg A(m)$ then there exists a family $\mathcal{F} \subseteq \mathcal{N}$ of cardinality fewer than \mathfrak{c} such that $\bigcup \mathcal{F} \notin \mathcal{N}$. By wAC \mathcal{N} is a σ-ideal, thus the family \mathcal{F} cannot be countable.

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ hold true

$$
\mathbf{w C H} \rightarrow A(m), \quad B(c) \rightarrow \mathcal{S N}=[\mathbb{R}]^{<\mathbf{c}} .
$$

Proof of Theorem 10:

- If $\neg A(m)$ then there exists a family $\mathcal{F} \subseteq \mathcal{N}$ of cardinality fewer than \mathfrak{c} such that $\bigcup \mathcal{F} \notin \mathcal{N}$. By wAC \mathcal{N} is a σ-ideal, thus the family \mathcal{F} cannot be countable. $\neg A(m) \rightarrow \neg \mathbf{w C H}$.

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ hold true

$$
\mathbf{w C H} \rightarrow A(m), \quad B(c) \rightarrow \mathcal{S N}=[\mathbb{R}]^{<\mathbf{c}} .
$$

Proof of Theorem 10:

- If $\neg A(m)$ then there exists a family $\mathcal{F} \subseteq \mathcal{N}$ of cardinality fewer than \mathfrak{c} such that $\bigcup \mathcal{F} \notin \mathcal{N}$. By wAC \mathcal{N} is a σ-ideal, thus the family \mathcal{F} cannot be countable. $\neg A(m) \rightarrow \neg \mathbf{w C H}$.
- Assume that $B(c)$ holds true and let A be any set of $[\mathbb{R}]^{<c}$.

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ hold true

$$
\mathbf{w C H} \rightarrow A(m), \quad B(c) \rightarrow \mathcal{S N}=[\mathbb{R}]^{<\mathbf{c}} .
$$

Proof of Theorem 10:

- If $\neg A(m)$ then there exists a family $\mathcal{F} \subseteq \mathcal{N}$ of cardinality fewer than \mathfrak{c} such that $\bigcup \mathcal{F} \notin \mathcal{N}$. By wAC \mathcal{N} is a σ-ideal, thus the family \mathcal{F} cannot be countable. $\neg A(m) \rightarrow \neg \mathbf{w C H}$.
- Assume that $B(c)$ holds true and let A be any set of $[\mathbb{R}]^{<c}$. Let F be any meager set of reals.

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ hold true

$$
\mathbf{w C H} \rightarrow A(m), \quad B(c) \rightarrow \mathcal{S N}=[\mathbb{R}]^{<\mathbf{c}} .
$$

Proof of Theorem 10:

- If $\neg A(m)$ then there exists a family $\mathcal{F} \subseteq \mathcal{N}$ of cardinality fewer than \mathfrak{c} such that $\bigcup \mathcal{F} \notin \mathcal{N}$. By wAC \mathcal{N} is a σ-ideal, thus the family \mathcal{F} cannot be countable. $\neg A(m) \rightarrow \neg \mathbf{w C H}$.
- Assume that $B(c)$ holds true and let A be any set of $[\mathbb{R}]^{<c}$. Let F be any meager set of reals. Then by $B(c)$ the family $\{x+F: x \in A\}$ cannot be a cover of \mathbb{R}, and therefore $A+F \neq \mathbb{R}$.

Theorem 9 in ZF+wAC (F. Galvin,J. Mycielski,R. M. Solovay [4])

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A+F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{Z F}+\mathbf{w A C}+\mathbf{L M}+\mathbf{B P}$ hold true

$$
\mathbf{w C H} \rightarrow A(m), \quad B(c) \rightarrow \mathcal{S N}=[\mathbb{R}]^{<\mathbf{c}} .
$$

Proof of Theorem 10:

- If $\neg A(m)$ then there exists a family $\mathcal{F} \subseteq \mathcal{N}$ of cardinality fewer than \mathfrak{c} such that $\bigcup \mathcal{F} \notin \mathcal{N}$. By wAC \mathcal{N} is a σ-ideal, thus the family \mathcal{F} cannot be countable. $\neg A(m) \rightarrow \neg \mathbf{w C H}$.
- Assume that $B(c)$ holds true and let A be any set of $[\mathbb{R}]^{<c}$. Let F be any meager set of reals. Then by $B(c)$ the family $\{x+F: x \in A\}$ cannot be a cover of \mathbb{R}, and therefore $A+F \neq \mathbb{R}$. Thus, $A \in \mathcal{S N}$.

Thanks for your attention!
 michal.stas@tuke.sk

References

Bi Baire R., Sur la théorie des fonctions discontinues, C. R. Acad. Sci. Paris 129 (1899), 1010-1013.
B. Bartoszyński, T., Judah, H., Shelah, S., The Cichoń Diagram, Journal of Symbolic Logic 58 (1993), 401-423.
© Corazza P., The generalized Borel conjecture and strongly proper orders, Trans. Amer. Math. Soc. 316 (1989), 115-140.
© Galvin F., Mycielski J., Solovay R. M., Strong measure zero sets, Notices Amer. Math. Soc. 26 (1973), A-280.

References

(i. Halmos P. R., Measure Theory, Van Nostrand, New York 1950.
(i) Kharazishvili A. B., Strange Functions in Real Analysis, Second edition, Marcel Dekker Inc., New York, 2000.
© Laver R., On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169.
(Shelah S., Can you take Solovay inaccessible away?, Israel J. Math. 48 (1984), 1-47.

