Perfect set property

Michal Staš

Department of Mathematics and Theoretical Informatics Faculty of Electrical Engineering and Informatics, TU in Košice

> 3. februar 2011 Hejnice

> > (日)

Problem

Does hold true **PSP** in the theory **ZF** + **wAC** + **LM** + **BP**?

wAC: Weak Axiom of ChoiceAC: Axiom of ChoiceAD: Axiom of DeterminacyBS: there exists a Bernstein set

PSP: every uncount. set of R contains a perfect set **LM**: every set of R is Lebesgue measurable **BP**: every set of R possess the Baire property **wCH**: there is no set X such that $\aleph_0 < |X| < c$

Problem

Does hold true **PSP** in the theory **ZF** + **wAC** + **LM** + **BP**?

wAC: Weak Axiom of ChoiceAC: Axiom of ChoiceAD: Axiom of DeterminacyBS: there exists a Bernstein set

PSP: every uncount. set of R contains a perfect set **LM**: every set of R is Lebesgue measurable **BP**: every set of R possess the Baire property **wCH**: there is no set X such that $\aleph_0 < |X| < c$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{k0} there exists a choice function.
- A subset A is called a Marczewski null set or (S)₀-set if every perfect set P ⊆ X has a perfect subset Q which misses A. In ZF + wAC we can verify that the class of all (S)₀-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

$[\mathbb{R}]^{\leq \aleph_0} \subseteq \mathcal{S}_0 \subseteq \mathcal{TI}$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{N0} there exists a choice function.
- A subset A is called a Marczewski null set or (S)₀-set if every perfect set P ⊆ X has a perfect subset Q which misses A. In ZF + wAC we can verify that the class of all (S)₀-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

$[\mathbb{R}]^{\leq \aleph_0} \subseteq \mathcal{S}_0 \subseteq \mathcal{TI}$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- A subset A is called a Marczewski null set or (S)₀-set if every perfect set P ⊆ X has a perfect subset Q which misses A. In ZF + wAC we can verify that the class of all (S)₀-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

$[\mathbb{R}]^{\leq \aleph_0} \subseteq \mathcal{S}_0 \subseteq \mathcal{TI}$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- A subset A is called a Marczewski null set or (S)₀-set if every perfect set P ⊆ X has a perfect subset Q which misses A. In ZF + wAC we can verify that the class of all (S)₀-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

$$[\mathbb{R}]^{\leq\aleph_0}\subseteq\mathcal{S}_0\subseteq\mathcal{TI}$$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- A subset A is called a Marczewski null set or (S)₀-set if every perfect set P ⊆ X has a perfect subset Q which misses A. In ZF + wAC we can verify that the class of all (S)₀-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

$[\mathbb{R}]^{\leq\aleph_0}\subseteq\mathcal{S}_0\subseteq\mathcal{TI}$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- A subset A is called a Marczewski null set or (S)₀-set if every perfect set P ⊆ X has a perfect subset Q which misses A. In ZF + wAC we can verify that the class of all (S)₀-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

$$[\mathbb{R}]^{\leq\aleph_0}\subseteq\mathcal{S}_0\subseteq\mathcal{TI}$$

- The Weak Axiom of Choice wAC says that for any countable family of non-empty subsets of a given set of power 2^{ℵ₀} there exists a choice function.
- A subset A is called a Marczewski null set or (S)₀-set if every perfect set P ⊆ X has a perfect subset Q which misses A. In ZF + wAC we can verify that the class of all (S)₀-sets is a σ-ideal.
- A subset of a perfect Polish space X is called a totally imperfect if it contains no perfect subset.

$$[\mathbb{R}]^{\leq\aleph_0}\subseteq\mathcal{S}_0\subseteq\mathcal{TI}$$

If there is no Bernstein set then $\mathcal{S}_0 = \mathcal{TI}$.

we shall need an auxiliary result

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ^w2.

Proof of Lemma 2: Take the mapping $\varphi : {}^{\omega}2 \rightarrow [0, 1]$ given by $\varphi(v) = \sum_{n} 2^{-n+1} v(n)$

- φ is continuous,
- φ(v) ∈ ℚ ∩ [0, 1] if and only if v is an eventually periodic sequence in ^ω2.

If $X \subseteq {}^{\omega}2$ is a Bernstein set, then $\varphi[X] \subseteq [0, 1]$ is Bernstein set.

If there is no Bernstein set then $S_0 = TI$.

- we shall need an auxiliary result

_emma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space $^{\omega}2$.

Proof of Lemma 2:

Take the mapping $\varphi : {}^{\omega}2 \rightarrow [0, 1]$ given by $\varphi(v) = \Sigma_n 2^{-n+1} v(n)$.

- φ is continuous,
- φ(v) ∈ Q ∩ [0, 1] if and only if v is an eventually periodic sequence in ^ω2.

If $X \subseteq {}^{\omega}2$ is a Bernstein set, then $\varphi[X] \subseteq [0, 1]$ is Bernstein set.

If there is no Bernstein set then $S_0 = TI$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${}^{\omega}2$.

Proof of Lemma 2: Take the mapping $\varphi : {}^{\omega}2 \rightarrow [0, 1]$ given by $\varphi(v) = \sum_n 2^{-n+1}v(n)$.

- φ is continuous,
- φ(v) ∈ Q ∩ [0, 1] if and only if v is an eventually periodic sequence in ^ω2.

If $X \subseteq {}^{\omega}2$ is a Bernstein set, then $\varphi[X] \subseteq [0, 1]$ is Bernstein set.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ⊙

If there is no Bernstein set then $S_0 = TI$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${}^{\omega}2$.

Proof of Lemma 2:

Take the mapping $\varphi : {}^{\omega}2 \rightarrow [0,1]$ given by $\varphi(v) = \Sigma_n 2^{-n+1} v(n)$.

- φ is continuous,
- φ(v) ∈ Q ∩ [0, 1] if and only if v is an eventually periodic sequence in ^ω2.

If $X \subseteq {}^{\omega}2$ is a Bernstein set, then $\varphi[X] \subseteq [0, 1]$ is Bernstein set.

If there is no Bernstein set then $\mathcal{S}_0 = \mathcal{TI}$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${}^{\omega}2$.

Proof of Lemma 2:

Take the mapping $\varphi : {}^{\omega}2 \rightarrow [0,1]$ given by $\varphi(v) = \Sigma_n 2^{-n+1} v(n)$.

- φ is continuous,
- φ(v) ∈ ℚ ∩ [0, 1] if and only if v is an eventually periodic sequence in ^ω2.

If $X \subseteq {}^{\omega}2$ is a Bernstein set, then $\varphi[X] \subseteq [0, 1]$ is Bernstein set.

If there is no Bernstein set then $S_0 = TI$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${}^{\omega}2$.

Proof of Lemma 2:

Take the mapping $\varphi : {}^{\omega}2 \rightarrow [0,1]$ given by $\varphi(v) = \sum_{n} 2^{-n+1} v(n)$.

- φ is continuous,
- φ(v) ∈ Q ∩ [0, 1] if and only if v is an eventually periodic sequence in ^ω2.

If $X \subseteq {}^{\omega}2$ is a Bernstein set, then $\varphi[X] \subseteq [0, 1]$ is Bernstein set.

If there is no Bernstein set then $S_0 = TI$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${}^{\omega}2$.

Proof of Lemma 2:

Take the mapping $\varphi : {}^{\omega}2 \rightarrow [0, 1]$ given by $\varphi(v) = \sum_{n} 2^{-n+1} v(n)$.

- φ is continuous,
- φ(ν) ∈ ℚ ∩ [0, 1] if and only if ν is an eventually periodic sequence in ^ω2.

If $X \subseteq {}^{\omega}2$ is a Bernstein set, then $\varphi[X] \subseteq [0, 1]$ is Bernstein set.

If there is no Bernstein set then $S_0 = TI$.

- we shall need an auxiliary result

Lemma 2

If there is no Bernstein set on the real line then there is no Bernstein set on the Cantor space ${}^{\omega}2$.

Proof of Lemma 2:

Take the mapping $\varphi : {}^{\omega}2 \rightarrow [0, 1]$ given by $\varphi(v) = \sum_{n} 2^{-n+1} v(n)$.

- φ is continuous,
- φ(v) ∈ ℚ ∩ [0, 1] if and only if v is an eventually periodic sequence in ^ω2.

If $X \subseteq {}^{\omega}2$ is a Bernstein set, then $\varphi[X] \subseteq [0, 1]$ is Bernstein set.

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and P being any perfect subset of \mathbb{R} .

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such that X ∩ Q = Ø

- fix an enumeration of basic open sets and take maximal open set U such that X ∩ P ∩ U is countable,
- $X_0 = (X \cap P) \setminus U$ is uncountable set without isolated points and therefore the set $Q = \overline{X_0} \subseteq P \setminus U$ is perfect,
- X₀ is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset Q^{*} ⊆ Q such that Q^{*} ∩ X₀ = Ø.
- $Q^* \subseteq Q \subseteq P \setminus U \subseteq P$ and $Q^* \cap X = \emptyset$,
- thus, X is $(S)_0$ -set.

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and *P* being any perfect subset of \mathbb{R} .

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such that X ∩ Q = ∅

- fix an enumeration of basic open sets and take maximal open set U such that $X \cap P \cap U$ is countable,
- $X_0 = (X \cap P) \setminus U$ is uncountable set without isolated points and therefore the set $Q = \overline{X_0} \subseteq P \setminus U$ is perfect,
- X₀ is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset Q^{*} ⊆ Q such that Q^{*} ∩ X₀ = Ø.
- $Q^* \subseteq Q \subseteq P \setminus U \subseteq P$ and $Q^* \cap X = \emptyset$,
- thus, X is $(S)_0$ -set.

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and *P* being any perfect subset of \mathbb{R} .

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such that X ∩ Q = Ø

- fix an enumeration of basic open sets and take maximal open set U such that $X \cap P \cap U$ is countable,
- $X_0 = (X \cap P) \setminus U$ is uncountable set without isolated points and therefore the set $Q = \overline{X_0} \subseteq P \setminus U$ is perfect,
- X₀ is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset Q^{*} ⊆ Q such that Q^{*} ∩ X₀ = Ø
- $Q^* \subseteq Q \subseteq P \setminus U \subseteq P$ and $Q^* \cap X = \emptyset$,
- thus, X is $(S)_0$ -set.

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and *P* being any perfect subset of \mathbb{R} .

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such that X ∩ Q = Ø

- fix an enumeration of basic open sets and take maximal open set *U* such that $X \cap P \cap U$ is countable,
- $X_0 = (X \cap P) \setminus U$ is uncountable set without isolated points and therefore the set $Q = \overline{X_0} \subseteq P \setminus U$ is perfect,
- X₀ is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset Q^{*} ⊆ Q such that Q^{*} ∩ X₀ = Ø.
- $Q^* \subseteq Q \subseteq P \setminus U \subseteq P$ and $Q^* \cap X = \emptyset$,
- thus, X is $(S)_0$ -set.

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and *P* being any perfect subset of \mathbb{R} .

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such that X ∩ Q = Ø

- fix an enumeration of basic open sets and take maximal open set U such that X ∩ P ∩ U is countable,
- $X_0 = (X \cap P) \setminus U$ is uncountable set without isolated points and therefore the set $Q = \overline{X_0} \subseteq P \setminus U$ is perfect,
- X₀ is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset Q^{*} ⊆ Q such that Q^{*} ∩ X₀ = Ø
- $Q^* \subseteq Q \subseteq P \setminus U \subseteq P$ and $Q^* \cap X = \emptyset$,
- thus, X is $(S)_0$ -set.

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and *P* being any perfect subset of \mathbb{R} .

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such that X ∩ Q = Ø

- fix an enumeration of basic open sets and take maximal open set U such that X ∩ P ∩ U is countable,
- X₀ = (X ∩ P) \ U is uncountable set without isolated points and therefore the set Q = X₀ ⊆ P \ U is perfect,
- X₀ is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset Q^{*} ⊆ Q such that Q^{*} ∩ X₀ = Ø,
- $Q^* \subseteq Q \subseteq P \setminus U \subseteq P$ and $Q^* \cap X = \emptyset$,
- thus, X is $(S)_0$ -set.

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and *P* being any perfect subset of \mathbb{R} .

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such that X ∩ Q = Ø

- fix an enumeration of basic open sets and take maximal open set U such that X ∩ P ∩ U is countable,
- X₀ = (X ∩ P) \ U is uncountable set without isolated points and therefore the set Q = X₀ ⊆ P \ U is perfect,
- X₀ is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset Q^{*} ⊆ Q such that Q^{*} ∩ X₀ = Ø,
- $Q^* \subseteq Q \subseteq P \setminus U \subseteq P$ and $Q^* \cap X = \emptyset$,
- thus, X is $(S)_0$ -set.

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and *P* being any perfect subset of \mathbb{R} .

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such that X ∩ Q = Ø

In the next, we shall assume that $X \cap P$ is uncountable set.

- fix an enumeration of basic open sets and take maximal open set U such that X ∩ P ∩ U is countable,
- X₀ = (X ∩ P) \ U is uncountable set without isolated points and therefore the set Q = X₀ ⊆ P \ U is perfect,
- X₀ is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset Q^{*} ⊆ Q such that Q^{*} ∩ X₀ = Ø,
- $Q^* \subseteq Q \subseteq P \setminus U \subseteq P$ and $Q^* \cap X = \emptyset$,

• thus, X is $(S)_0$ -set.

Let $X \subseteq \mathbb{R}$ be an uncountable totally imperfect set and *P* being any perfect subset of \mathbb{R} .

if |X ∩ P| ≤ ω, then there exists a perfect set Q ⊆ P such that X ∩ Q = Ø

- fix an enumeration of basic open sets and take maximal open set U such that X ∩ P ∩ U is countable,
- X₀ = (X ∩ P) \ U is uncountable set without isolated points and therefore the set Q = X₀ ⊆ P \ U is perfect,
- X₀ is totally imperfect set that is not Bernstein set in Q, there exists a perfect subset Q^{*} ⊆ Q such that Q^{*} ∩ X₀ = Ø,
- $Q^* \subseteq Q \subseteq P \setminus U \subseteq P$ and $Q^* \cap X = \emptyset$,
- thus, X is $(S)_0$ -set.

Diagram 2

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remark in ZF+DC (A. B. Kharazishvili [6])

If there exists a totally imperfect set of reals of cardinality \mathfrak{c} , then there exists a Lebesgue non-measurable set of reals.

- this statement one can prove in the theory **ZF+wAC** and Luzin Theorem is essentially exploited for its proof

Let X, Y be Polish spaces, μ being a Borel measure on X. A function $f : X \to Y$ is μ -measurable if and only if for any positive ε there exists a μ -measurable set $A \subseteq X$ such that $\mu(A) < \varepsilon$ and $f|(X \setminus A)$ is continuous.

Remark in ZF+DC (A. B. Kharazishvili [6])

If there exists a totally imperfect set of reals of cardinality c, then there exists a Lebesgue non-measurable set of reals.

- this statement one can prove in the theory **ZF+wAC** and Luzin Theorem is essentially exploited for its proof

Theorem 3 in **ZF+wAC** (N. N. Luzin, see e.g. [5])

Let X, Y be Polish spaces, μ being a Borel measure on X. A function $f : X \to Y$ is μ -measurable if and only if for any positive ε there exists a μ -measurable set $A \subseteq X$ such that $\mu(A) < \varepsilon$ and $f|(X \setminus A)$ is continuous.

Remark in ZF+DC (A. B. Kharazishvili [6])

If there exists a totally imperfect set of reals of cardinality c, then there exists a Lebesgue non-measurable set of reals.

- this statement one can prove in the theory **ZF+wAC** and Luzin Theorem is essentially exploited for its proof

Theorem 3 in **ZF+wAC** (N. N. Luzin, see e.g. [5])

Let X, Y be Polish spaces, μ being a Borel measure on X. A function $f : X \to Y$ is μ -measurable if and only if for any positive ε there exists a μ -measurable set $A \subseteq X$ such that $\mu(A) < \varepsilon$ and $f|(X \setminus A)$ is continuous.

In the theory ZF + wAC + LM any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f : \mathbb{R} \to X$ be a bijection.

- Supposing that *f* is Lebesgue measurable, there exists a measurable set *A* ⊆ ℝ with strictly positive measure such that the restriction *f*|*A* is continuous.
- The Lebesgue measure is Radon, i.e.

 $\lambda^*(A) = \sup\{\lambda^*(K) : K \subseteq A, K \text{ compact}\}$

- K is uncountable and f|K is a homeomorphism.
- f(K) being a subset of X contains a non-empty perfect set,
 which contradicts the assumption of X.

In the theory ZF + wAC + LM any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let

$f:\mathbb{R} o X$ be a bijection.

- Supposing that *f* is Lebesgue measurable, there exists a measurable set *A* ⊆ ℝ with strictly positive measure such that the restriction *f*|*A* is continuous.
- The Lebesgue measure is Radon, i.e.

 $\lambda^*(A) = \sup\{\lambda^*(K) : K \subseteq A, K \text{ compact}\}$

- K is uncountable and f|K is a homeomorphism.
- f(K) being a subset of X contains a non-empty perfect set,
 which contradicts the assumption of X.

In the theory ZF + wAC + LM any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f : \mathbb{R} \to X$ be a bijection.

- Supposing that *f* is Lebesgue measurable, there exists a measurable set *A* ⊆ ℝ with strictly positive measure such that the restriction *f*|*A* is continuous.
- The Lebesgue measure is Radon, i.e.

 $\lambda^*(A) = \sup\{\lambda^*(K) : K \subseteq A, K \text{ compact}\}$

- K is uncountable and f|K is a homeomorphism.
- f(K) being a subset of X contains a non-empty perfect set,
 which contradicts the assumption of X.

In the theory ZF + wAC + LM any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f : \mathbb{R} \to X$ be a bijection.

- $T: \mathbb{R} \to X$ be a bijection.
 - Supposing that *f* is Lebesgue measurable, there exists

a measurable set $A \subseteq \mathbb{R}$ with strictly positive measure such that the restriction f|A is continuous.

The Lebesgue measure is Radon, i.e.

 $\lambda^*(A) = \sup\{\lambda^*(K) : K \subseteq A, K \text{ compact}\}$

- K is uncountable and f|K is a homeomorphism.
- f(K) being a subset of X contains a non-empty perfect set,
 which contradicts the assumption of X.

In the theory ZF + wAC + LM any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f : \mathbb{R} \to X$ be a bijection.

- Supposing that *f* is Lebesgue measurable, there exists a measurable set *A* ⊆ ℝ with strictly positive measure such that the restriction *f*|*A* is continuous.
- The Lebesgue measure is Radon, i.e.

 $\lambda^*(A) = \sup\{\lambda^*(K) : K \subseteq A, K \text{ compact}\}$

- K is uncountable and f|K is a homeomorphism.
- f(K) being a subset of X contains a non-empty perfect set,
 which contradicts the assumption of X.

Theorem 4

In the theory ZF + wAC + LM any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f : \mathbb{R} \to X$ be a bijection.

- Supposing that *f* is Lebesgue measurable, there exists a measurable set *A* ⊆ ℝ with strictly positive measure such that the restriction *f*|*A* is continuous.
- The Lebesgue measure is Radon, i.e.

 $\lambda^*(A) = \sup\{\lambda^*(K) : K \subseteq A, K \text{ compact}\}$

there exists a compact set *K* in \mathbb{R} with positive measure.

- K is uncountable and f|K is a homeomorphism.
- f(K) being a subset of X contains a non-empty perfect set,
 which contradicts the assumption of X.

Theorem 4

In the theory ZF + wAC + LM any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f : \mathbb{R} \to X$ be a bijection.

- Supposing that *f* is Lebesgue measurable, there exists a measurable set *A* ⊆ ℝ with strictly positive measure such that the restriction *f*|*A* is continuous.
- The Lebesgue measure is Radon, i.e.

 $\lambda^*(A) = \sup\{\lambda^*(K) : K \subseteq A, K \text{ compact}\}$

there exists a compact set K in \mathbb{R} with positive measure.

• *K* is uncountable and f|K is a homeomorphism.

f(K) being a subset of X contains a non-empty perfect set,
 which contradicts the assumption of X.

Theorem 4

In the theory ZF + wAC + LM any totally imperfect set of reals has cardinality strictly smaller than c.

Proof of Theorem 4:

Let $X \subseteq \mathbb{R}$ be a totally imperfect set of cardinality \mathfrak{c} and let $f : \mathbb{R} \to X$ be a bijection.

- Supposing that *f* is Lebesgue measurable, there exists a measurable set *A* ⊆ ℝ with strictly positive measure such that the restriction *f*|*A* is continuous.
- The Lebesgue measure is Radon, i.e.

 $\lambda^*(A) = \sup\{\lambda^*(K) : K \subseteq A, K \text{ compact}\}$

there exists a compact set K in \mathbb{R} with positive measure.

- *K* is uncountable and f|K is a homeomorphism.
- f(K) being a subset of X contains a non-empty perfect set,
 which contradicts the assumption of X.

In the theory ZF + wAC + LM the following assertions are equivalent:

- a) wCH holds true.
- b) Any $(S)_0$ -set of reals is countable.
- c) PSP holds true.

An analogue of the Corollary 5 holds true for the Baire Property:

Assume that X, Y are metric separable spaces. A function $f : X \longrightarrow Y$ is Baire measurable if and only if there exists a meager set $D \subseteq X$ such that $f|(X \setminus D)$ is continuous. Especially, for any Borel measurable, i.e. for analytically representable function f there exists a meager set $D \subseteq X$ such that $f|(X \setminus D)$ is continuous.

In the theory ZF + wAC + LM the following assertions are equivalent:

- a) wCH holds true.
- b) Any $(S)_0$ -set of reals is countable.
- c) **PSP** holds true.

An analogue of the Corollary 5 holds true for the Baire Property:

Theorem 6 in **ZF+wAC** (R. Baire, see e.g. [1])

Assume that X, Y are metric separable spaces. A function $f: X \longrightarrow Y$ is Baire measurable if and only if there exists a meager set $D \subseteq X$ such that $f|(X \setminus D)$ is continuous. Especially, for any Borel measurable, i.e. for analytically representable function f there exists a meager set $D \subseteq X$ such that $f|(X \setminus D)$ is continuous.

In the theory ZF + wAC + LM the following assertions are equivalent:

- a) wCH holds true.
- b) Any $(S)_0$ -set of reals is countable.
- c) **PSP** holds true.

An analogue of the Corollary 5 holds true for the Baire Property:

Theorem 6 in ZF+wAC (R. Baire, see e.g. [1])

Assume that *X*, *Y* are metric separable spaces. A function $f : X \longrightarrow Y$ is Baire measurable if and only if there exists a meager set $D \subseteq X$ such that $f|(X \setminus D)$ is continuous. Especially, for any Borel measurable, i.e. for analytically representable function *f* there exists a meager set $D \subseteq X$ such that $f|(X \setminus D)$ is continuous.

In the theory ZF + wAC + BP the following assertions are equivalent:

- a) wCH holds true.
- b) Any $(S)_0$ -set of reals is countable.
- c) PSP holds true.

Let us remark that by Shelah model [8] of ZF + DC we already know that $BP \rightarrow wCH$. The overall question still remains open:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ⊙

Does hold true wCH in the theory ZF + wAC + LM + BP?

In the theory $\mathbf{ZF} + \mathbf{wAC} + \mathbf{BP}$ the following assertions are equivalent:

- a) wCH holds true.
- b) Any $(S)_0$ -set of reals is countable.
- c) PSP holds true.

Let us remark that by Shelah model [8] of ZF + DC we already know that $BP \rightarrow wCH$. The overall question still remains open:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ⊙

block hold true wCH in the theory ZF + wAC + LM + BP?

In the theory $\mathbf{ZF} + \mathbf{wAC} + \mathbf{BP}$ the following assertions are equivalent:

- a) wCH holds true.
- b) Any $(S)_0$ -set of reals is countable.
- c) PSP holds true.

Let us remark that by Shelah model [8] of ZF + DC we already know that $BP \rightarrow wCH$. The overall question still remains open:

(日) (日) (日) (日) (日) (日) (日) (日)

Problem

Does hold true wCH in the theory ZF + wAC + LM + BP?

In the theory $\mathbf{ZF} + \mathbf{wAC} + \mathbf{BP}$ the following assertions are equivalent:

- a) wCH holds true.
- b) Any $(S)_0$ -set of reals is countable.
- c) PSP holds true.

Let us remark that by Shelah model [8] of ZF + DC we already know that $BP \rightarrow wCH$. The overall question still remains open:

Problem

Does hold true wCH in the theory ZF + wAC + LM + BP?

An existence of uncountable $(S)_0$ -sets

• related to the small sets is often connected with the notions as λ' -sets, σ -sets, Sierpiński and Luzin sets

An existence of uncountable $(S)_0$ -sets

 related to the small sets is often connected with the notions as λ'-sets, σ-sets, Sierpiński and Luzin sets

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

An existence of uncountable $(S)_0$ -sets

 related to the small sets is often connected with the notions as λ'-sets, σ-sets, Sierpiński and Luzin sets

Diagram 3

-

In the theory ZF+wAC+LM+BP:

Diagram 4

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

In the theory ZF+wAC+LM+BP:

Diagram 5

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Borel Conjecture [1919]

- the Borel Conjecture is neither provable nor refutable in ZFC, mainly by a construction of a model of ZFC by R. Laver [7],
- P. Corazza [3] showed that the Generalized Borel
 Conjecture, saying SN = [R]^{<c}, is also independent of ZFC,
- By Theorems 1 and 4 we have that *TI* = S₀ = [ℝ]^{<c} in the theory **ZF+wAC+LM+BP**.

Borel Conjecture [1919]

- the Borel Conjecture is neither provable nor refutable in ZFC, mainly by a construction of a model of ZFC by R. Laver [7],
- P. Corazza [3] showed that the Generalized Borel
 Conjecture, saying SN = [R]^{<c}, is also independent of ZFC,
- By Theorems 1 and 4 we have that *TI* = S₀ = [ℝ]^{<c} in the theory **ZF+wAC+LM+BP**.

Borel Conjecture [1919]

- the Borel Conjecture is neither provable nor refutable in ZFC, mainly by a construction of a model of ZFC by R. Laver [7],
- P. Corazza [3] showed that the Generalized Borel
 Conjecture, saying SN = [R]^{<c}, is also independent of ZFC,
- By Theorems 1 and 4 we have that *TI* = S₀ = [ℝ]^{<c} in the theory **ZF+wAC+LM+BP**.

Borel Conjecture [1919]

- the Borel Conjecture is neither provable nor refutable in ZFC, mainly by a construction of a model of ZFC by R. Laver [7],
- P. Corazza [3] showed that the Generalized Borel Conjecture, saying SN = [R]^{<c}, is also independent of ZFC,
- By Theorems 1 and 4 we have that *TT* = S₀ = [ℝ]^{<c} in the theory **ZF+wAC+LM+BP**.

Borel Conjecture [1919]

- the Borel Conjecture is neither provable nor refutable in ZFC, mainly by a construction of a model of ZFC by R. Laver [7],
- P. Corazza [3] showed that the Generalized Borel Conjecture, saying SN = [R]^{<c}, is also independent of ZFC,
- By Theorems 1 and 4 we have that *TI* = S₀ = [ℝ]^{<c} in the theory ZF+wAC+LM+BP.

In the theory ZF + wAC + LM + BP the following assertions are equivalent:

- a) wCH holds true.
- b) Any $(S)_0$ -set of reals is countable.
- c) PSP holds true.
- d) the Borel Conjecture and the Generalized Borel Conjecture hold true.

Diagram 6

The Cichoń Diagram - T. Barto., H. Judah and S. Shelah [2] - described the relationship between the following sentences in the Cichoń Diagram

- $A(m) \equiv$ unions of fewer than 2^{\aleph_0} null sets is null,
- $B(m) \equiv \mathbb{R}$ is not the union of fewer than 2^{\aleph_0} null sets,
- $C(m) \equiv$ ideal of null sets has no basis of size less than 2^{\aleph_0} ,

(日) (日) (日) (日) (日) (日) (日) (日)

- $U(m) \equiv$ every subset of \mathbb{R} of size less than 2^{\aleph_0} is null.
- replacing word "null" by the word "meager" we obtain A(c), B(c), C(c) and U(c), respectively.

The Cichoń Diagram - T. Barto., H. Judah and S. Shelah [2] - described the relationship between the following sentences in the Cichoń Diagram

- $A(m) \equiv$ unions of fewer than 2^{\aleph_0} null sets is null,
- $B(m) \equiv \mathbb{R}$ is not the union of fewer than 2^{\aleph_0} null sets,
- C(m) ≡ ideal of null sets has no basis of size less than 2^{ℵ0},

(日) (日) (日) (日) (日) (日) (日) (日)

- $U(m) \equiv$ every subset of \mathbb{R} of size less than 2^{\aleph_0} is null.
- replacing word "null" by the word "meager" we obtain A(c), B(c), C(c) and U(c), respectively.

The Cichoń Diagram - T. Barto., H. Judah and S. Shelah [2] - described the relationship between the following sentences in the Cichoń Diagram

- $A(m) \equiv$ unions of fewer than 2^{\aleph_0} null sets is null,
- $B(m) \equiv \mathbb{R}$ is not the union of fewer than 2^{\aleph_0} null sets,
- C(m) ≡ ideal of null sets has no basis of size less than 2^{ℵ0},
- $U(m) \equiv$ every subset of \mathbb{R} of size less than 2^{\aleph_0} is null.
- replacing word "null" by the word "meager" we obtain A(c), B(c), C(c) and U(c), respectively.

Diagram 7

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory **ZF** + **wAC** + **LM** + **BP** hold true

wCH $\rightarrow A(m), \quad B(c) \rightarrow \mathcal{SN} = [\mathbb{R}]^{<\mathfrak{c}}.$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that ∪ F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
- Assume that B(c) holds true and let A be any set of $[\mathbb{R}]^{<c}$. Let F be any meager set of reals. Then by B(c) the family $\{x + F : x \in A\}$ cannot be a cover of \mathbb{R} , and therefore $A + F \neq \mathbb{R}$. Thus, $A \in SN$.

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory ZF + wAC + LM + BP hold true

$$\mathbf{wCH} \to A(m), \quad B(c) \to \mathcal{SN} = [\mathbb{R}]^{<\mathfrak{c}}.$$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that U F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
- Assume that B(c) holds true and let A be any set of $[\mathbb{R}]^{<c}$. Let F be any meager set of reals. Then by B(c) the family $\{x + F : x \in A\}$ cannot be a cover of \mathbb{R} , and therefore $A + F \neq \mathbb{R}$. Thus, $A \in SN$.

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{ZF} + \mathbf{wAC} + \mathbf{LM} + \mathbf{BP}$ hold true

wCH
$$\rightarrow A(m), \quad B(c) \rightarrow S\mathcal{N} = [\mathbb{R}]^{<\mathfrak{c}}.$$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that ∪ F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
- Assume that B(c) holds true and let A be any set of $[\mathbb{R}]^{<c}$. Let F be any meager set of reals. Then by B(c) the family $\{x + F : x \in A\}$ cannot be a cover of \mathbb{R} , and therefore $A + F \neq \mathbb{R}$. Thus, $A \in SN$.

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory ZF + wAC + LM + BP hold true

wCH
$$\rightarrow A(m), \quad B(c) \rightarrow SN = [\mathbb{R}]^{<\mathfrak{c}}.$$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that U F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
 Assume that B(c) holds true and let A be any set of [ℝ] ≤ 5
 - Let *F* be any meager set of reals. Then by B(c) the family $\{x + F : x \in A\}$ cannot be a cover of \mathbb{R} , and therefore $A + F \neq \mathbb{R}$. Thus, $A \in SN$.

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{ZF} + \mathbf{wAC} + \mathbf{LM} + \mathbf{BP}$ hold true

wCH
$$\rightarrow A(m), \quad B(c) \rightarrow SN = [\mathbb{R}]^{<\mathfrak{c}}.$$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that U F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
- Assume that B(c) holds true and let A be any set of $[\mathbb{R}]^{<c}$. Let F be any meager set of reals. Then by B(c) the family $\{x + F : x \in A\}$ cannot be a cover of \mathbb{R} , and therefore $A + F \neq \mathbb{R}$. Thus, $A \in SN$.

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory $\mathbf{ZF} + \mathbf{wAC} + \mathbf{LM} + \mathbf{BP}$ hold true

wCH
$$\rightarrow A(m), \quad B(c) \rightarrow SN = [\mathbb{R}]^{<\mathfrak{c}}.$$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that U F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
- Assume that B(c) holds true and let A be any set of $[\mathbb{R}]^{<c}$. Let F be any meager set of reals. Then by B(c) the family $\{x + F : x \in A\}$ cannot be a cover of \mathbb{R} , and therefore $A + F \neq \mathbb{R}$. Thus, $A \in SN$.

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory ZF + wAC + LM + BP hold true

wCH
$$\rightarrow A(m), \quad B(c) \rightarrow SN = [\mathbb{R}]^{<\mathfrak{c}}.$$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that U F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
- Assume that B(c) holds true and let A be any set of [ℝ]^{<c}.
 Let F be any meager set of reals. Then by B(c) the family {x + F : x ∈ A} cannot be a cover of ℝ, and therefore A + F ≠ ℝ. Thus, A ∈ SN.

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory ZF + wAC + LM + BP hold true

wCH
$$\rightarrow A(m), \quad B(c) \rightarrow SN = [\mathbb{R}]^{<\mathfrak{c}}.$$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that U F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
- Assume that B(c) holds true and let A be any set of [ℝ]^{<c}. Let F be any meager set of reals. Then by B(c) the family {x + F : x ∈ A} cannot be a cover of ℝ, and therefore A + F ≠ ℝ. Thus, A ∈ SN.

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory ZF + wAC + LM + BP hold true

wCH
$$\rightarrow A(m), \quad B(c) \rightarrow SN = [\mathbb{R}]^{<\mathfrak{c}}.$$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that U F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
- Assume that B(c) holds true and let A be any set of [ℝ]^{<c}. Let F be any meager set of reals. Then by B(c) the family {x + F : x ∈ A} cannot be a cover of ℝ, and therefore A + F ≠ ℝ. Thus, A ∈ SN.

A set $A \subseteq \mathbb{R}$ has strong measure zero if and only if for every meager set $F \subseteq \mathbb{R}$ we have $A + F \neq \mathbb{R}$.

Theorem 10

In the theory ZF + wAC + LM + BP hold true

wCH
$$\rightarrow A(m), \quad B(c) \rightarrow SN = [\mathbb{R}]^{<\mathfrak{c}}.$$

- If ¬A(m) then there exists a family F ⊆ N of cardinality fewer than c such that U F ∉ N. By wAC N is a σ-ideal, thus the family F cannot be countable. ¬A(m) → ¬wCH.
- Assume that B(c) holds true and let A be any set of [ℝ]^{<c}. Let F be any meager set of reals. Then by B(c) the family {x + F : x ∈ A} cannot be a cover of ℝ, and therefore A + F ≠ ℝ. Thus, A ∈ SN.

Thanks for your attention!

michal.stas@tuke.sk

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- Baire R., Sur la théorie des fonctions discontinues, C. R. Acad. Sci. Paris 129 (1899), 1010–1013.
- Bartoszyński, T., Judah, H., Shelah, S., The Cichoń Diagram, Journal of Symbolic Logic 58 (1993), 401–423.
- Corazza P., The generalized Borel conjecture and strongly proper orders, Trans. Amer. Math. Soc. 316 (1989), 115–140.
- Galvin F., Mycielski J., Solovay R. M., *Strong measure zero sets*, Notices Amer. Math. Soc. **26** (1973), A-280.

References

- Halmos P. R., MEASURE THEORY, Van Nostrand, New York 1950.
- Kharazishvili A. B., *Strange Functions in Real Analysis,* Second edition, Marcel Dekker Inc., New York, 2000.
- Laver R., On the consistency of Borel's conjecture, Acta Math. **137** (1976), 151–169.
- Shelah S., *Can you take Solovay inaccessible away?*, Israel J. Math. **48** (1984), 1–47.

(日)